
JOURNAL OF SOLID STATE CHEMISTRY 48, 93-99 (1983) 

The Equilibrium Shapes of Crystals and of Cavities in Crystals 

ALAN W. SEARCY 

Materials and Molecular Research Division, Lawrence Berkeley Laboratory 
and Department of Materials Science and Mineral Engineering, University 
of California, Berkeley, California 94720 

Received August 23, 1982; in revised form January 31, 1983 

Surface free energies are assumed to be the sum of the excess free energies of bonding of molecules in 
or near the surface, and the stable form of a crystal or cavity is assumed to be the form that makes the 
sum of these excess free energies a minimum. When only plane surfaces are allowed, this model 
predicts the same shapes for crystals as an equation of Wulff (2. Kristallogr. 34, 449 (1901)), which is 
based on the macroscopic thermodynamic relation of Gibbs (“The Collected Works, Vol. 1.: Thermo- 
dynamics,” Longmans, Green, New York (1931)). The model predicts rounding of edges and corners 
of kinds which are not allowed by the Wulff relation and predicts that spherical forms of particles and 
cavities can be stable despite anisotropic surface free energies. The model provides a useful frame- 
work for analysis of whether unstable crystal or cavity shapes will evolve into stable or metastable 
forms. Some crystals and cavities that have been assumed to have equilibrium shapes instead have 
metastable shapes. 

I. Introduction fore, (1) and (2) both appear almost self- 
evidently correct. But under conditions 

Gibbs (I), and, independently, Curie (2), that favor equilibrium, cavities in metals 
derived as the condition which determines are reported to be bounded by faceted, low- 
equilibrium shapes of crystals index surfaces (4, 5). In contrast, exterior 

surfaces of high-purity metal crystals often 
CiWiAi is a minimum (1) show more rounded surfaces (6-8). 

The difference is usually regarded as re- 
where oi is the specific surface free energy fleeting experimental error in one or the 
per unit area of crystal face i and Ai is its other kind of experiment. It has been sug- 
area. Wulff (3) first recognized that Eq. (1) gested, for example, that the faceting of 
implies that the facets of crystals or of cavi- cavities may not be an equilibrium property 
ties in crystals should obey the relation (8). But annealing causes cavities of appar- 

uilhi=ujhj=. . . (2) 
ently constant volume formed by inert gas 
ion bombardment of metal foils to evolve 

where hi is the distance from a common from spherical to faceted shapes (4, 5). 
center drawn normal to crystal or cavity This evidence that these faceted cavities 
facet i. are more stable than rounded ones cannot 

Equation (1) describes the minimum be dismissed. 
work of surface formation derived from The fault for the apparent discrepancy 
macroscopic thermodynamics and, there- between shapes of crystals and cavities 
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may lie partly in limitations in the analysis. 
Gibbs’ proof was developed from macro- 
scopic thermodynamics specifically for fac- 
eted crystals. It is shown in the next section 
of this paper that interpretations which 
have been given of rounded crystal surfaces 
in terms of Eq. (2) may not adequately ex- 
plain particle properties. Then it is shown 
that if the free energy of a crystal surface is 
viewed as the sum of the excess free ener- 
gies of those molecules of the crystal which 
are in or near the surface, the condition 
found for equilibrium is equivalent to Eq. 
(1) as long as rounding of surfaces is arbi- 
trarily excluded. But the microthermo- 
dynamic model shows that rounded sur- 
faces need not obey Eq. (2) and that 
spherical crystals or cavities may have 
wide differences in local specific surface 
free energies. 

In a discussion section, the microthermo- 
dynamic model is used to suggest that 
metastable shapes are often likely to be pro- 
duced and that some presumed equilibrium 
shapes of crystals and cavities probably are 
metastable forms. An accepted determina- 
tion of the relative temperature depen- 
dences of surface tensions of different 
facets of cavity surfaces is shown to be 
questionable. 

II. Theory 

A defect in the macroscopic model is that 
it provides no means of describing sepa- 
rately the thermodynamic behavior of mol- 
ecules which are at corners or edges of sur- 
face planes. Edge and corner atoms are less 
tightly bonded than molecules in other 
parts of a surface. In consequence, a round- 
ing of edges and corners that is not pre- 
dicted by Eq. (2) might be expected (9). 
Herring (20) addressed this problem by as- 
suming that, in the vicinity of an edge, the 
surface tension can be expressed as a series 
formed of constants multiplied by the ra- 
dius of curvature to the 0, -1, -2, . . . 

powers. He then sought values for the con- 
stants and radius of curvature that are plau- 
sible and that would be consistent with 
Gibbs’ fundamental relation, Eq. (1). 

From his analysis Herring concluded that 
when the Wulff construction predicts fac- 
eted crystals, rounding of “at most a few 
tens of atom spacings” can occur, and that 
when the Wulff construction predicts that 
all or part of the equilibrium shape will be 
smoothly rounded, “for a specimen of ob- 
servable size the amount of rounding will 
correspond fairly closely to that demanded 
by the Wulff construction without any fur- 
ther refinements.” 

Herring applied these deductions to in- 
terpret the observation that metal tips 
which have been used in field emission 
studies approach smoothly rounded shapes 
with perhaps a few flat regions in the crys- 
tallographically simplest directions. He 
concluded that either anisotropy of surface 
tensions must be low enough to give a 
Wulff construction of the smoothly 
rounded type, or that the rounded shape of 
the field emission tips is not an equilibrium 
one. 

Careful efforts made subsequent to Her- 
ring’s analysis to establish equilibrium con- 
ditions in tips of field emitters continue to 
yield essentially hemispherical forms (II, 
12). Drechsler and Nicholas (23) have cal- 
culated theoretical equilibrium shapes us- 
ing Morse or Mie potentials that are in 
excellent agreement with experimental ob- 
servation when constants are used that 
yield surface energies of only slight direc- 
tional anisotropy. Consequently, most in- 
vestigators would probably now accept 
Herring’s first suggested interpretation- 
that the tip shapes reflect an equilibrium 
consistent with Wulff’s analysis. 

Direct observations of diffusion in the ad- 
sorption layers of field emitter tips, how- 
ever, show substantial dependence on sur- 
face orientation (14) and suggest, therefore, 
that adsorption energies vary substantially 
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with surface orientation; such variations 
imply that the bonding energies of atoms in 
the surface layer also vary substantially 
with orientation. 

To develop a thermodynamic model that 
may be in better accord with molecular be- 
havior in and on crystal surfaces, a single 
component or pseudo-single component 
crystal is here assumed to have a free en- 
ergy of formation from its constituent mole- 
cules that is an additive function of the free 
energies of bonding of each molecule to 
other molecules, whether next or more dis- 
tant neighbors. The crystal is in its most 
stable form when its constituent molecules 
are arranged in whatever way makes its to- 
tal surface free energy a minimum. A crys- 
tal or cavity that is bounded only by plane 
surfaces i, j, . . . is considered first. 

The excess free energy of molecules in 
the outermost layer of the i surface over 
molecules in the bulk crystal is Gil,, Girb, 
. . . and in the next outermost layer is GiZc, 
G i2d, . . . , where a and b, for example, 
identify molecules of the layer with differ- 
ent excess free energies. The i surface is 
thus considered to include those subsurface 
layers in which, because of the presence of 
the surface, average molecular free ener- 
gies are raised above the free energies of 
molecules in the bulk by some arbitrarily 
small fraction of kT, where k is the Boltz- 
mann constant. Molecules at edges be- 
tween crystal surfaces and molecules near 
edges have free energies Gijr,, Gij,f, Gilzg, 
. . . ) where the first two subscripts iden- 
tify the surface planes to which the edge 
molecules belong, the number identifies the 
layer, and the last subscript identifies possi- 
ble different excess free energies for mole- 
cules of the same edge and layer. 

An approximation in Eq. (1) is that the 
free energy of formation of edges or corners 
is simply the sum of the free energies of 
formation of an equivalent area of surfaces 
of the planes bounded by the edges or cor- 
ners. When this approximation is adopted, 

Gijr,, for example, is equal to Gila + Gjr,, 
that is, the free energy of edge and corner 
molecules can be assigned to the surfaces 
which the edge and corner molecules termi- 
nate. Then when ni is defined as the sum of 
all molecules with excess free energies be- 
cause of the presence of the surface i, 

CiniGi = IZiciAi (3) 

and for crystals which are restricted to hav- 
ing only plane surfaces, the microscopic 
model is equivalent to the macroscopic 
model. 

The restriction that only planar crystal 
faces are allowed can be dropped, and the 
most stable form of a crystal or cavity in a 
crystal is then that for which 

CiniGi is a minimum (4) 

where the summation is now understood to 
be over all molecules in which the free en- 
ergy is raised over that of molecules in the 
bulk by the presence of exterior or cavity 
surfaces, whether planar or curved. 

Equation (4) allows rounded corners and 
edges to be treated in the same framework 
as curved surfaces; within the overall limit 
set by Eq. (4) there is no restriction set on 
their radii of curvature, and a surface with 
essentially equal radii of curvature over 
two solid angles from a common center can 
have different surface free energies over 
those two solid angles if the resultant crys- 
tal form minimizes the free energy of the 
crystal as a whole. 

Application of Eq. (4) can be illustrated 
by comparing theoretical relative stabilities 
at 0°K of a faceted face centered cubic (fee) 
crystal to a spherical fee crystal of the same 
volume. The expected facets are on (100) 
and (111) planes. For present purposes, the 
excess atomic enthalpy Hi for each atom 
can be assumed to be proportional to the 
difference between the number of neighbor 
atoms in the bulk crystal and the number of 
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neighbors Ni for atom i, that is, Hi = k( 12 - 
Ni), where k is the enthalpy per bond. This 
assumption makes the ratio of specific sur- 
face enthalpies in (100) surfaces to specific 
enthalpies in (111) surfaces, Hrmn& 
Hlllnlll = (4 sin60”)/3 = 1.15, where 111~ = 
lzlll sin 60” because of the lower packing 
density in (100) planes. 

With these relative surface enthalpies, 
the Wulff relation makes the ratio of the 
lengths of the normals from a common cen- 
ter to the 100 and 111 faces of the cubo- 
octahedron 1.15. Equation (4) asserts that a 
sphere of the same volume will have an 
equal total surface free energy when 

uave ml1 fl1lX-l -=-=- 
r hill ha 

where (T,~ is the average specific surface 
free energy per unit area over the sphere 
and r is its radius. For equal volumes, r = 
0.985 hlw, and therefore a spherical crystal 
can be more stable than the Wulff cubo- 
octahedron as long as oaave < 0.985 * 1.15 = 
1.13. Local values of o for the sphere can 
range from ulrl = 1 .OO to values larger than 
uave. The Wulff relation permits spherical 
crystals only if u values are the same over 
the entire surface. 

Data of Van Hardeveld and Hartog (15) 
can be used to show that essentially spheri- 
cal crystals with surfaces of varying local 
surface free energies can have low total free 
energies. As part of a statistical study of 
adsorption sites on metal crystals, they cal- 
culated the number of nearest neighbors for 
all the surface atoms of a number of polyhe- 
dral crystals and of a nearly spherical crys- 
tal, all of which could be formed from 683 
atoms packed in an fee structure. The 
nearly spherical crystal was formed in two 
steps. Atoms were assigned to all lattice 
sites lying within a sphere with a radius 
equal to 4.9 times the atomic diameter and 
with the center at a lattice site. A so-called 
rearranged sphere of a larger number of 
nearest neighbors per atom was then 

formed by movement of 8 atoms of low 
atomic coordination to vacant lattice sites 
with 5 neighboring occupied sites. The 
polyhedral shapes considered by Van Har- 
develd and Hartog included several trun- 
cated octahedra; these had (111) and (100) 
surfaces, but the faces were not formed at 
the distances required by the Wulff con- 
struction. Evidently a symmetrical cubo- 
octahedron cannot be formed of 683 atoms. 

Crystals formed of 683 atoms are so 
small-if formed of gold atoms, only -3 
nm in cross section-that a significant frac- 
tion of the atoms of the polyhedral crystals 
are in edge or corner sites; consequently it 
is not surprising to calculate that the un- 
symmetrical pair-bonded polyhedra have 
higher surface enthalpies than does the re- 
arranged sphere. But the fact that the aver- 
age number of neighbors per surface atom 
in the rearranged sphere is 8.1, making uave 
= 1.11 uIll in this pair-bonding model for 
the small sphere, is pertinent. The optimum 
crystal packing must be size dependent, but 
this result suggests that spherical particles 
may be stable, despite markedly aniso- 
tropic bonding, for larger crystals as well. 

III. Discussion 

The microthermodynamic model that 
leads to Eq. (4) and the macrothermo- 
dynamic model that leads to Eq. (2) are 
both straightforward derivations based on 
the same initial assumption. The two ap- 
proaches might have been expected to lead 
to identical results, but the microthermo- 
dynamic analysis suggests that particle 
equilibrium may be achieved by molecular 
packing arrangements that violate Eq. (2). 
In particular, Eq. (2) allows spherical crys- 
tals to be formed only if the specific surface 
free energies in each solid angle of the crys- 
tal are identical, while the microthermo- 
dynamic model allows greater surface free 
energy variations and allows corners and 
edges to take forms not allowed by Eq. (2). 
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That crystal forms which do not obey the 
Wulff relation can be stable is demonstrable 
by model calculations of the kind illustrated 
by use of the Van Hardeveld and Hat-tog 
data. Experimental demonstration that 
such forms are stable is more difficult. The 
experimental evidence for substantial an- 
isotropy in surface free energies which was 
presented above is qualitative. It would be 
desirable to study the surface anisotropy of 
field emitter tips by excitation methods that 
provide measurements of individual bond 
energies. 

Equation (2) cannot be used to describe 
metastable crystal or cavity shapes. The 
microthermodynamic model provides a 
useful framework for understanding their 
formation and persistence. The persistence 
of metastable forms was recently subjected 
to a useful analysis in terms of nucleation 
theory (16). The present model has a differ- 
ent emphasis. Nucleation is usually consid- 
ered to occur by statistical fluctuations in a 
focal portion of a system. Shape changes 
for surfaces may be slow because the 
change from one shape to a more stable one 
requires the surface as a whole to assume 
intermediate shapes of higher total surface 
free energy than that of the initial shape. 

The difference in stability between two 
different forms of a crystal-form b and 
form a-is given by Gtb - G,, , where Grb 
and G,a are total surface free energies for 
the crystal or cavity. But provided the free 
energy change is negative, its magnitude 
plays no direct role in determining whether 
the transformation from a to more stable 
form b will take place. The driving forces 
for shape changes result from differences in 
free energies in subareas of the existing sur- 
face at any given time, say subareas (Y and 
P* 

Because shape changes are never di- 
rectly driven by the free energy difference 
between initial and final forms, structure- 
sensitive kinetic factors can often play ma- 
jor roles in shape evolution. If, for exam- 

ple, an initially spherical particle or cavity 
is unstable relative to a symmetrical poly- 
hedral form, the sphere is almost certainly 
also unstable relative to a variety of other 
forms with the same facets, but with rela- 
tive areas that violate both Eqs. (2) and (4). 
Statistical fluctuations in dislocation densi- 
ties, which have been shown to be impor- 
tant in causing marked variations in rates of 
cavity migration (17), might cause different 
particles or cavities of a particular solid to 
evolve into forms which have the same sur- 
faces, but with different relative areas. 
When a particle or cavity has reached a 
shape that is bounded by surfaces that ap- 
proximate those of the most stable form, 
further evolution may become too slow to 
observe in experimentally practicable 
times. 

Experimental observations should be 
evaluated with this expectation in mind. 
Perhaps, for example, although transfer of 
a monolayer from one surface to another 
would reduce the total free energy, transfer 
of one half of a monolayer would produce 
an intermediate form of higher total free en- 
ergy. This kind of possibility could be 
tested by calculations of the kind made by 
Van Hardeveld and Hartog. 

This analysis suggests that greater cau- 
tion should be exercised in accepting per- 
sistent crystal forms as stable, or as conse- 
quences of impurities. For example, the 
observation (18) that initially spherical par- 
ticles of gold, silver, and copper are trans- 
formed on annealing to partially rounded 
polyhedral shapes is definitive evidence 
that those latter shapes are more stable 
than the initial spheres. But, for gold parti- 
cles annealed at 1000°C in dry Hz, contami- 
nation by the furnace atmosphere is un- 
likely, and observations of minor 
imperfections in “nearly all” profiles may 
not indicate nonuniform contamination, as 
suggested by Sundquist (6), but rather the 
development of metastable shapes that can- 
not further evolve. The larger the crystal, 
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the more unlikely it is that the form of maxi- 
mum stability will be achieved-a conclu- 
sion also reached from nucleation theory 
(16). 

The assumption (6, IS) that the relative 
specific surface free energies of (100) and 
(111) surfaces can be deduced from relative 
areas of facets in partially faceted crystals 
may not be warranted, even if one accepts 
Eq. (2), because the relative areas may sim- 
ply be those that evolve by the kinetically 
most favorable process and then persist as 
metastable forms. 

Development of rounded crystals from 
the partially rounded polygonal crystals 
when silver is heated through 775°C and 
copper is heated somewhat above 1000°C 
must mean that the entropy of transition to 
the essentially spherical crystals is positive, 
as noted by Sundquist (7). The positive en- 
tropy may not be a consequence of surface 
roughening as Sundquist suggested, how- 
ever. It seems likely that the particles ob- 
served by Sundquist have atomically 
smooth surfaces like those of field emitter 
tips. If so, the positive entropy of rounding 
is not due to surface roughening of the kind 
considered in the model of Burton et al. 

(19). 
Because polygonized cavities in magne- 

sium, cadmium, and zinc evolve from ini- 
tially spherical cavities (4, 5), the polygo- 
nal forms must be more stable than 
spherical ones. Observations that the ratio 
of cavity dimensions along the c axis to di- 
mensions along the a axis of the hexagonal 
cavities show wide statistical fluctuations- 
for zinc by a factor of two-constitute clear 
evidence that the cavities commonly ap- 
proach metastable shapes. The assumption 
(20) that relative surface entropies can be 
calculated from the temperature depen- 
dence of the average axial ratios must be 
questioned; the average depends on uneval- 
uated kinetic variations. 

To many scientists the attraction of 
chemical thermodynamics lies in using our 

understanding of structure and bonding to 
predict thermodynamic behavior under 
conditions that have not been directly stud- 
ied. The most important conclusion from 
this study is that an analysis of the structure 
and bonding in surfaces can provide new 
insights in surface thermodynamics. Papers 
are in preparation on the utilization of this 
approach to analysis of particle-vapor 
equilibria and of multilayer adsorption 
equilibria. 
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